CRITICAL BLOW-UP AND EXTINCTION EXPONENTS FOR NON-NEWTON POLYTROPIC FILTRATION EQUATION WITH SOURCE
نویسندگان
چکیده
منابع مشابه
Blow-up for a non-Newtonian Polytropic Filtration Equation with Multiple Nonlinearities
This paper deals with the global existence and blow-up of a non-Newtonian polytropic filtration equation with multiple nonlinearities. We obtain necessary and sufficient conditions on the global existence of all positive solutions by constructing super solutions and sub solutions. AMS Subject Classifications: 35K50, 35K55, 35K65.
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملBlow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation
We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...
متن کاملBlow-up for Parabolic and Hyperbolic Problems with Variable Exponents
In this paper we study the blow up problem for positive solutions of parabolic and hyperbolic problems with reaction terms of local and nonlocal type involving a variable exponent. We prove the existence of initial data such that the corresponding solutions blow up at a finite time.
متن کاملGlobal Well-posedness, Scattering and Blow-up for the Energy Critical Focusing Non-linear Wave Equation
In this paper we consider the energy critical non-linear wave equation ∂ t u−∆u = ± |u| 4 N−2 u (x, t) ∈ R × R u ∣∣ t=0 = u0 ∈ Ḣ1(R ) ∂tu ∣∣ t=0 = u1 ∈ L(R ) Here the − sign corresponds to the defocusing problem, while the + sign corresponds to the focusing problem. The theory of the local Cauchy problem (CP) for this equation was developed in many papers, see for instance [26], [9], [2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2009
ISSN: 1015-8634
DOI: 10.4134/bkms.2009.46.6.1159